-
UKAEA-CCFE-PR(22)162022
The contribution provides a concise overview of ion beam analysis methods and pro- cedures in studies of materials exposed to fusion plasmas in controlled fusion devices with magnetic confinement. An impact of erosion-deposition processes on the morphology of wall materials is- presented. In particular, results for deuterium analyses are discussed.…
-
UKAEA-CCFE-PR(22)052022
The analysis of quiescent discharges exhibiting edge harmonic magnetoydrodynamic activity in the JET-Carbon wall machine is presented. It is observed that the quiescent phase with multiple-n harmonic oscillations is sustained until a threshold in pedestal electron density and collisionality is crossed. The macroscopic pedestal parameters associated…
-
UKAEA-CCFE-CP(23)612021
The relative role of particle transport and edge fuelling in setting the H-mode density pedestal is still a key open question [1]. Although reduced pedestal models have proven successful in predicting the pedestal pressure for a wide range of plasma scenarios [2,3,4], they lack a first principle based, predictive model for the edge density. Pred…
-
UKAEA-CCFE-CP(23)342021
The characteristically intense neutron source generated in deuterium-tritium (DT) fusion power presents notable challenges for materials comprising the structure of the device which are exposed to them. These include radiation damage effects leading to degradation of structural properties with impact on maintenance and replacement frequency, but…
-
UKAEA-CCFE-PR(23)1022021
We present the results of GENE gyrokinetic calculations based on a series of JET-ILW type I ELMy H-mode discharges operating with similar experimental inputsbut at different levels of power and gas fuelling. We show that turbulence due to slab electron-temperature-gradient modes (sETGs) produces a significant amount of heat flux in four JET-ILW …
-
UKAEA-CCFE-CP(23)272021
Disruptions pose a serious challenge for future tokamak power plants; at the large stored thermal and magnetic energies of ITER and DEMO plasmas, the heat loads and electromagnetic forces during disruptions must be mitigated. With this objective, JET experiments employing impurity shattered pellet injection (SPI) have recently been undertaken. W…
-
UKAEA-CCFE-CP(23)192021
Control of plasma H:D isotope mix using solely shallow pellets (in H or D) was demonstrated in recent experiments, attaining ~50%:50% ratio. The isotope mix propagates from the edge to the core on the confinement timescale. Isotope dependence of energy confinement is within error bar to scaling laws. A dataset is collected for different pellet s…
-
UKAEA-CCFE-CP(23)132021
JET has investigated one the key issues for the baseline scenario in ITER, the integration of a radiative divertor for heat load control with the use of neon and nitrogen as seed impurity. A characterization of the choice of the impurity seed on plasma confinement, neutrons, pedestal MHD stability, pedestal instabilities, core transport is given…
-
UKAEA-CCFE-CP(21)122021
This contribution outlines a strategy for assessing tritium (T) inventory in plasma facing components (PFC) during JET T operations. It is based on retention as a fraction of fuel injected in-vessel, currently reported as 0.24% for 2011-2012 operating period, in conjunction with the planned T pulse schedule providing fueling of 4 g T injected per d…
-
UKAEA-CCFE-CP(21)082021
The pedestal plays an important role in determining the confinement in tokamak H-mode plasmas. However, the steep pressure gradients in this transport barrier also lead to edge localized modes (ELMs) [1]. There is good understanding of the pedestal in type I ELM regimes [2], however, type I ELMs are known to damage plasma facing components and f…
Showing 41 - 50 of 223 UKAEA Paper Results