-
UKAEA-CCFE-PR(24)2612024
The fusion reaction between deuterium and tritium, D(T,n)4He is the main source of energy in future thermonuclear reactors. Alpha-particles (4He-ions) born with an average energy of 3.5MeV transferring energy to the thermal plasma during their slowing down, they should provide the self-sustained D-T
-
UKAEA-CCFE-PR(23)1912023
ITER is of key importance in the European fusion roadmap as it aims to prove the scientific and technological feasibility of fusion as a future energy source. The EUROfusion consortium of labs is contributing to the preparation of ITER scientific exploitation and operation and aspires to exploit ITER outcomes in view of DEMO. The paper provides …
-
UKAEA-CCFE-CP(21)092020
Understanding the effects of neutron irradiation of materials is one of the outstanding issues in the development of fusion technologies. The impact of this work derives from the opportunity, for the first time in a tokamak operating with a D-T plasma, to deliver experimental results which directly link to the nuclear characteristics of real sample…
-
UKAEA-CCFE-PR(18)792018
This paper reports new activities conducted as part of the JET technology programme under the WP-JET3 ACT sub-project collaboration. The aim of the sub-project is to take advantage of the significant 14 MeV neutron fluence expected during JET operations to irradiate samples of materials that will used in the manufacturing of main ITER tokamak compo…
-
UKAEA-CCFE-PR(18)12018
This paper details progress in experimental characterisation work at JET for the long-term irradiation station conducted as part of a project to perform activation experiments using ITER materials. The aim is to take advantage of the significant 14 MeV neutron yield expected during JET operations to irradiate samples of materials that will be used …
Showing 1 - 5 of 5 UKAEA Paper Results
Page 1 of 1