-
UKAEA-CCFE-PR(24)2472023
The JET hybrid scenario has been developed from low plasma current carbon wall discharges to the record-breaking Deuterium-Tritium plasmas obtained in 2021 with the ITER-like Be/W wall. The development started in pure Deuterium with refinement of the plasma current, and toroidal magnetic field choices and succeeded in solving the heat load challeng…
-
UKAEA-CCFE-CP(23)312021
Alfvén eigenmode (AE) instabilities driven by α-particles have been observed in D-3He fusion experiments on the Joint European Torus (JET) with the ITER-like wall [Kiptily et al, submitted to Phys. Rev. Letters, 2020]. The impact of these type instabilities on a burning plasma is of crucial relevance for the perfor…
-
UKAEA-CCFE-PR(21)782021
Alfvén eigenmode (AE) instabilities driven by alpha-particles have been observed in D-3He fusion experiments on the Joint European Torus (JET) with the ITER-like wall (ILW). For the efficient generation of fusion alpha-particles from D-3He fusion reaction, the 3‑ion radio frequency (RF) scenario was used t…
-
UKAEA-CCFE-CP(20)1092020
Understanding the impact of the synergistic effects on fast ion distribution function (DF) is essential for maximising the fusion rates in magnetic confinement fusion plasma. Because fusion reactions such as D-D, D-3He, D-T etc. have different energy dependencies, tailoring the energies of the fast ions to predetermined values optimal for fusion…
-
UKAEA-CCFE-PR(20)1142020
Achieving high neutron yields in today’s fusion research relies on high power auxiliary heating in order to attain required core temperatures. This is usually achieved by means of high Neutral Beam (NB) and Radio Frequency (RF) power. Application of NB power is accompanied by production of fast beam ions and associated Beam-Target (BT) reactio…
-
UKAEA-CCFE-PR(20)1002020
Dedicated experiments to generate high-energy D ions and D-3He fusion-born alpha particles have been performed at the Joint European Torus (JET) with the ITER-like wall (ILW). Deuterium ions from neutral beam injection (NBI) with acceleration voltage of 100 keV were accelerated to higher energies in the core of mixed D-3He…
-
UKAEA-CCFE-CP(18)112018
Results of simulations of the sawtooth-induced redistribution of fast ions in JET and ITER with the code OFSEF are presented. The dependence of the redistribution on the particle parameters (energy and pitch angle) is studied. The redistribution of the trapped and marginally passing particles is found to exhibit barrier-like behaviour at the separa…
-
2015
The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world. JET has been upgraded over the years and recently it has also become a test facility of the components designed for ITER, the next step fusion machine under construction in Cadarache (France). At JET, the neutron emission profile of Deuterium (D) or Deuterium-Tritium (D…
-
2014
The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world devoted to nuclear fusion experiments of magnetic confined Deuterium (D)/Deuterium-Tritium (DT) plasmas. Neutrons produced in these plasmas are measured using various types of neutron detectors and spectrometers. Two of these instruments on JET make use of organic liquid…
-
2014
In this work we estimate the fuel ion density profile in deuterium plasmas at JET, using the JET neutron camera, the neutron time-of-flight spectrometer TOFOR, and fusion reactivities modeled by the transport code TRANSP. The framework has been tested using synthetic data, which showed that the density profile could be reconstructed with an average…
Showing 1 - 10 of 12 UKAEA Paper Results