-
UKAEA-CCFE-PR(23)1672023
A nonlinear 4-dimensional drift island theory derived in (Imada et al 2019 Nucl. Fusion 59 046016 and references therein) provides qualitative predictions of the plasma response to a stationary neoclassical tearing mode (NTM) magnetic island in a low beta, large aspect ratio tokamak plasma. (Dudkovskaia et al 2021 Plasma Phys. Control. Fusion 63 05…
-
UKAEA-STEP-CP(24)022022
The UK’s Spherical Tokamak for Energy Production (STEP) reactor design program has recently taken the decision to use exclusively microwave-based heating and current drive (HCD) actuators for its reactor concepts. This is based on a detailed assessment considering all viable HCD concepts, covering the grid to plasma efficiency (), physics applica…
-
UKAEA-CCFE-PR(23)1882022
In 2019, the JET-ILW was equipped with a Shattered Pellet Injector (SPI) system with a wide capability to allow studies on the efficacy of shattered pellets in reducing the electro-magnetic and the thermal loads during disruptions and the avoidance/suppression of the formation of runaway electrons. The fully commissioned system became operationa…
-
UKAEA-STEP-CP(23)072022
With steady progress on ITER project and the design of DEMO, the international community is now entering an era in which fusion power on the grid could become a reality within the next 20 – 30 years. In this environment the UK has started the ambitious Spherical Tokamak for Energy Production (STEP) programme, aiming to develop a compact protot…
-
UKAEA-STEP-CP(23)052022
The UK’s Spherical Tokamak for Energy Production (STEP) reactor design program is now exclusively investigating concepts using microwave-based heating and current drive (HCD) systems. Electron Bernstein Wave (EBW) HCD is a relatively immature technology compared to Electron Cyclotron (EC) HCD but is of interest due to the promise of high current…
-
UKAEA-STEP-PR(22)012022
Spherical tokamaks (STs) have been shown to possess properties desirable for a fusion power plant such as achieving high plasma β and having increased vertical stability. To understand their confinement properties in a reactor relevant regime a 1GW fusion power spherical tokamak plasma equilibrium was analysed using linear gyrokinetics to deter…
-
UKAEA-CCFE-CP(23)352021
Neutral Beam Injection (NBI) is a very flexible auxiliary heating method for tokamak plasmas, capable of being efficiently coupled to the various plasma configurations required in the Tritium and Deuterium–Tritium Experimental campaign (DTE2) to be undertaken in the JET device. In particular, experiments for high fusion yield and alpha particl…
-
UKAEA-CCFE-CP(23)142021
The high heat fluxes to the divertor during edge localised mode (ELM) instabilities have to be reduced for a sustainable future tokamak reactor. A solution to reduce the heat fluxes could be the Super-X divertor, this divertor configuration will be tested on MAST-U. ELM simulations for MAST-U Super-X tokamak plasmas have been obtained, using JOR…
-
UKAEA-CCFE-PR(22)022021
Ion-gyroradius-scale microinstabilities typically have a frequency comparable to the ion transit frequency. Hence, it is conventionally assumed that passing electrons respond adiabatically in ion-gyroradius-scale modes, due to the small electron-to-ion mass ratio and the large electron transit frequency. However, in gyrokinetic simulations of io…
-
UKAEA-CCFE-CP(21)072021
The disruption mitigation system at ITER will include four shattered pellet injectors (SPI), which will be dedicated to the mitigation of electro-magnetic loads (EML), thermal loads and the avoidance and suppression of runaway electrons. Recently the JETILW was equipped with an SPI with a wide capability. Specifically: pellet diameter d = [4.57, 8.…
Showing 11 - 20 of 91 UKAEA Paper Results