-
UKAEA-CCFE-CP(23)012023
The JET 2019–2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019–2020, and …
-
UKAEA-CCFE-PR(24)2432022
JET tokamak with the ITER-like wall is operated with arrays of castellated beryllium limiters in the main chamber. In several locations Be marker tiles were installed for erosion-deposition studies. The castellation sides and the plasma-facing surfaces (PFS) of Be marker tiles from three different locations of the JET main chamber, from the expe…
-
UKAEA-CCFE-PR(23)1882022
In 2019, the JET-ILW was equipped with a Shattered Pellet Injector (SPI) system with a wide capability to allow studies on the efficacy of shattered pellets in reducing the electro-magnetic and the thermal loads during disruptions and the avoidance/suppression of the formation of runaway electrons. The fully commissioned system became operationa…
-
UKAEA-CCFE-CP(23)542022
Several Ion Cyclotron Resonance Heating (ICRH) schemes in DT plasma have been considered for the ITER reactor [1]. Most of these heating schemes are minority heating at fundamental frequency. In DT plasma, both reactants can also absorb RF power as majorities at fundamental n=1 or harmonic n=2 frequency. Understanding benefits of directly heatin…
-
UKAEA-CCFE-PR(23)1132022
The Joint European Torus (JET) is operated with the ITER-Like Wall (JET-ILW): beryllium in the main chamber and tungsten in the divertor in order to replicate materials for ITER. It was present systematic and quantitative study of tritium retention in dust and divertor tiles of ILW by means of tritium imaging plate technique to assess tritium le…
-
UKAEA-CCFE-CP(23)482022
Recent experiments performed in JET at high level of plasma heating, in preparation of, and during the DT campaign have shown significant discrepancies between electron temperature measurements by Thomson Scattering (TS) and Electron Cyclotron Emission (ECE). In order to perform a systematic analysis of this effect, a simple model of bipolar dis…
-
UKAEA-CCFE-CP(23)462022
Accurate and consistent measurements of the electron temperature (Te) profile are paramount for current fusion experiments, like JET, and future devices, such as ITER. In high performance plasmas in JET and TFTR, electron cyclotron emission (ECE) measurements for central Te>5 keV were systematically found to be up to 20%…
-
UKAEA-CCFE-CP(23)402022
Shattered pellet injection (SPI), with research started in recent years, is the current concept for the ITER disruption mitigation system (DMS) to prevent disruption-related damage. Compared with impurity SPI, pure deuterium (D2) SPI could contribute to runaway electron (RE) avoidance in ITER via a strong dilution cooling before the thermal quen…
-
UKAEA-CCFE-PR(22)872022
The neutral ionisation model proposed by R J Groebner et al. (Phys Plasmas 9 2134 (2002)) to determine the plasma density profile in the H-mode pedestal, extended to include charge exchange processes in the pedestal stimulated by the ideas of Mahdavi et al. ((Phys Plasmas 10 3984 (2003)). The model is then teste…
-
UKAEA-CCFE-PR(22)482022
The evolution of SOL density profiles and fluctuations have been studied at different recycling levels in 3 different tokamaks, ASDEXUpgrade, TCV and JET, all operated in HMode. In all devices we clearly observe an increase of far SOL efolding length at high …
Showing 31 - 40 of 227 UKAEA Paper Results