-
UKAEA-CCFE-PR(24)2612024
The fusion reaction between deuterium and tritium, D(T,n)4He is the main source of energy in future thermonuclear reactors. Alpha-particles (4He-ions) born with an average energy of 3.5MeV transferring energy to the thermal plasma during their slowing down, they should provide the self-sustained D-T
-
UKAEA-CCFE-PR(24)2472023
The JET hybrid scenario has been developed from low plasma current carbon wall discharges to the record-breaking Deuterium-Tritium plasmas obtained in 2021 with the ITER-like Be/W wall. The development started in pure Deuterium with refinement of the plasma current, and toroidal magnetic field choices and succeeded in solving the heat load challeng…
-
UKAEA-CCFE-PR(24)022023
This work studies the influence of RF waves in ICRH range of frequency on fusion alphas during recent JET D-T campaign. Fusion alphas from D-T reactions are born with energies of about 3.5MeV and therefore have significant Doppler shift enabling synergistic interaction between them and RF waves at broad range of frequencies including the ones fo…
-
UKAEA-CCFE-CP(23)672023
The fusion reaction between deuterium and tritium, D(T,n)4He is the main source of energy in future thermonuclear reactors. Charged fusion products of this reaction, α-particles (4He-ions), are born with an average energy of 3.5 MeV. Transferring energy to the thermal plasma during their slowing down, the…
-
UKAEA-CCFE-PR(23)1822023
The reference ion cyclotron resonance frequency (ICRF) heating schemes for ITER deuterium-tritium (D-T) plasmas at the full magnetic field of 5.3 T are second harmonic heating of tritium and 3He minority heating. The wave-particle resonance location for these schemes coincide and are central at a wave frequency of 53 MHz at 5.3T [1]. Experiments ha…
-
UKAEA-CCFE-PR(23)1812023
During the DTE2 campaign in the JET tokamak we performed a parameter scan in T and D-T complementing existing pulses in H and D. For the different main ion masses H-modes at fixed plasma current and magnetic field can have the pedestal pressure varying by a factor of 4 and the total pressure changing from betaN = 1.0 to 3.0. Based on this wide data…
-
UKAEA-CCFE-PR(23)1652023
This work studies the interaction between Radio Frequency (RF) waves used for Ion Cyclotron Resonance Heating (ICRH) and the fast D and T Neutral Beam Injected (NBI) ions in DT plasma. The focus is on the effect of this interaction, also referred to as synergistic effects, on the fusion performance in the recent JET DTE2 campaign. Experimental d…
-
UKAEA-CCFE-CP(23)642023
The fusion reaction between deuterium and tritium, D(T,n)4He is the main source of energy in future thermonuclear reactors. Charged fusion products of this reaction, α-particles (4He-ions), are born with an average energy of 3.5 MeV. Transferring energy to the thermal plasma during their slowing down, the…
-
UKAEA-CCFE-PR(23)1212023
In the paper we present an overview of interpretive modelling of a database of JET-ILW 2021 D-T discharges using the TRANSP code. Our main aim is to assess our capability of computationally reproducing the fusion performance of various D-T plasma scenarios using different external heating and D-T mixtures, and understand the performance driving mec…
-
UKAEA-CCFE-CP(23)392021
A key aim of the 2021 JET deuterium-tritium (D-T) experiments was to demonstrate steady high fusion power (10-15MW) with the ITER-like Be/W first wall. Plasmas were developed using D, repeated with T to investigate and mitigate isotope effects, and run with D-T to maximise fusion power. Compared with high current (q95~3) ‘baseline’ plasmas, …
Showing 1 - 10 of 26 UKAEA Paper Results