-
UKAEA-CCFE-CP(25)142024
The typical pulse on the JET tokamak is ~10s during the main phase of the discharge, however long discharge operation (>30s) is possible with sufficient preparation and care. During the last period of JET operation in 2023 long pulses in deuterium plasmas were developed to assess the sustainment of the plasma performance over current resistive t…
-
UKAEA-CCFE-CP(25)122024
Neutron and gamma radiation is known to have deleterious effects on the properties of optical components. Optical fibres are especially vulnerable due to the long distances the light typically travels though them. In 2021 and 2023 JET has completed two D-T experimental campaigns where a significant amount of 14MeV neutrons were released.…
-
UKAEA-CCFE-PR(24)2612024
The fusion reaction between deuterium and tritium, D(T,n)4He is the main source of energy in future thermonuclear reactors. Alpha-particles (4He-ions) born with an average energy of 3.5MeV transferring energy to the thermal plasma during their slowing down, they should provide the self-sustained D-T
-
UKAEA-CCFE-PR(23)1912023
ITER is of key importance in the European fusion roadmap as it aims to prove the scientific and technological feasibility of fusion as a future energy source. The EUROfusion consortium of labs is contributing to the preparation of ITER scientific exploitation and operation and aspires to exploit ITER outcomes in view of DEMO. The paper provides …
-
UKAEA-CCFE-CP(23)672023
The fusion reaction between deuterium and tritium, D(T,n)4He is the main source of energy in future thermonuclear reactors. Charged fusion products of this reaction, α-particles (4He-ions), are born with an average energy of 3.5 MeV. Transferring energy to the thermal plasma during their slowing down, the…
-
UKAEA-CCFE-CP(23)642023
The fusion reaction between deuterium and tritium, D(T,n)4He is the main source of energy in future thermonuclear reactors. Charged fusion products of this reaction, α-particles (4He-ions), are born with an average energy of 3.5 MeV. Transferring energy to the thermal plasma during their slowing down, the…
-
UKAEA-CCFE-PR(23)1212023
In the paper we present an overview of interpretive modelling of a database of JET-ILW 2021 D-T discharges using the TRANSP code. Our main aim is to assess our capability of computationally reproducing the fusion performance of various D-T plasma scenarios using different external heating and D-T mixtures, and understand the performance driving mec…
-
UKAEA-CCFE-PR(23)102022
The fusion-born alpha-particle heating in magnetically confined fusion machines is a high priority subject for study. The self-heating of thermonuclear fusion plasma by alpha-particles was observed in recent deuterium-tritium (D-T) experiments on the Joint European Torus (JET). This observation was possible by conducting so-called “af…
-
UKAEA-CCFE-CP(23)342021
The characteristically intense neutron source generated in deuterium-tritium (DT) fusion power presents notable challenges for materials comprising the structure of the device which are exposed to them. These include radiation damage effects leading to degradation of structural properties with impact on maintenance and replacement frequency, but…
-
UKAEA-CCFE-CP(23)122020
The planned high-profile experiments during 2020 at the Joint European Torus (JET), notably including a deuterium-tritium (DT) experimental phase, are expected to produce large neutron yields, in the region of 1021 neutrons. The scientific objectives are linked with a technology programme, WPJET3, to deliver the maximum scientific and…
Showing 1 - 10 of 18 UKAEA Paper Results