-
UKAEA-CCFE-PR(24)2612024
The fusion reaction between deuterium and tritium, D(T,n)4He is the main source of energy in future thermonuclear reactors. Alpha-particles (4He-ions) born with an average energy of 3.5MeV transferring energy to the thermal plasma during their slowing down, they should provide the self-sustained D-T
-
UKAEA-CCFE-PR(25)2882023
Dedicated experiments were performed in JET DTE2 plasmas for obtaining α-particle bump-on-tail (BOT) distribution aiming at exciting Alfvén Eigenmodes (AEs) in baseline tokamak plasma scenario with safety factor q(0)~1. NBI-only heating with modulated power was used so that fusion-born α-particles were the only ions present in the MeV energy ran…
-
UKAEA-CCFE-PR(25)2872023
Fast-particle driven Alfvén Eigenmodes have been observed in low-collisionality discharges with off-axis neutral beam injection (NBI), electron cyclotron resonance heating (ECRH) and a reduced toroidal magnetic field. During NBI and ECRH, toroidicity induced Alfvén Eigenmodes (TAEs) appear in frequency bands close to 200 kHz and energetic-part…
-
UKAEA-CCFE-PR(24)2452023
2021 JET experimental campaign has produced high stationary fusion power with 50%D 50%T discharges, operated with the ITER-relevant conditions i.e. operation with the baseline or hybrid scenario in the full metallic wall. It has provided a unique opportunity to assess the DT fusion power prediction capability before ITER DT experiments. This pap…
-
UKAEA-CCFE-CP(23)672023
The fusion reaction between deuterium and tritium, D(T,n)4He is the main source of energy in future thermonuclear reactors. Charged fusion products of this reaction, α-particles (4He-ions), are born with an average energy of 3.5 MeV. Transferring energy to the thermal plasma during their slowing down, the…
-
UKAEA-CCFE-PR(23)1822023
The reference ion cyclotron resonance frequency (ICRF) heating schemes for ITER deuterium-tritium (D-T) plasmas at the full magnetic field of 5.3 T are second harmonic heating of tritium and 3He minority heating. The wave-particle resonance location for these schemes coincide and are central at a wave frequency of 53 MHz at 5.3T [1]. Experiments ha…
-
UKAEA-CCFE-PR(23)1792023
-
UKAEA-CCFE-CP(23)642023
The fusion reaction between deuterium and tritium, D(T,n)4He is the main source of energy in future thermonuclear reactors. Charged fusion products of this reaction, α-particles (4He-ions), are born with an average energy of 3.5 MeV. Transferring energy to the thermal plasma during their slowing down, the…
-
UKAEA-CCFE-PR(23)1252023
In JET deuterium-tritium (D-T) plasmas, the fusion power is produced through thermonuclear reactions and reactions between thermal ions and fast particles generated by neutral beam injection (NBI) heating or accelerated by electromagnetic wave heating in the ion cyclotron range of frequencies (ICRF). To complement the experiments with 50/50 D/T …
-
UKAEA-CCFE-PR(23)1212023
In the paper we present an overview of interpretive modelling of a database of JET-ILW 2021 D-T discharges using the TRANSP code. Our main aim is to assess our capability of computationally reproducing the fusion performance of various D-T plasma scenarios using different external heating and D-T mixtures, and understand the performance driving mec…
Showing 1 - 10 of 21 UKAEA Paper Results