-
UKAEA-CCFE-CP(25)242025
-
UKAEA-CCFE-CP(25)232025
The feasibility of laser-induced breakdown spectroscopy (LIBS) for measuring fuel retention was demonstrated for the first time in a tokamak operating with tritium using a remotely controlled in situ application in JET. In JET and future fusion reactors such as ITER and DEMO, thick co-deposited layers will be formed at the inner wall during exte…
-
UKAEA-CCFE-PR(25)3802025
This Roadmap article addresses the critical and multifaceted challenge of plasma-facing component (PFC) damage caused by runaway electrons (REs) in tokamaks, a phenomenon that poses a significant threat to the viability and longevity of future fusion reactors such as ITER and DEMO. The dramatically increased RE production expected in future high-cu…
-
UKAEA-CCFE-CP(25)212024
Tritium inventory build-up is a safety issue for next step devices. JET brings a unique contribution on fuel retention and recovery in a metallic device, as it has operated both in deuterium (D) and deuterium-tritium (DT) plasmas. This paper will provide an overview of results from JET in this fi…
-
UKAEA-CCFE-CP(25)142024
The typical pulse on the JET tokamak is ~10s during the main phase of the discharge, however long discharge operation (>30s) is possible with sufficient preparation and care. During the last period of JET operation in 2023 long pulses in deuterium plasmas were developed to assess the sustainment of the plasma performance over current resistive t…
-
UKAEA-CCFE-CP(25)292023
INTRODUCTION Future generation tokamaks, including ITER, will strive for better confinement, which means a higher fusion plasma current to achieve a good Fusion Efficiency Factor value greater than 10 [1]. One of the major threats with this scenario is a potential for increased damage of first wall components due to unmitig…
-
UKAEA-CCFE-PR(25)2892023
This paper reports the first experiment carried out in deuterium–tritium addressing the integration of a radiative divertor for heat-load control with good confinement. Neon seeding was carried out for the first time in a D–T plasma as part of the second D–T campaign of JET with its Be/W wall environment. The technical difficulties linked to …
-
UKAEA-CCFE-PR(23)1802023
-
UKAEA-CCFE-PR(23)1242023
Beryllium samples from the JET ITER-like wall limiter tiles with either co-deposits or surface cracks caused by melt damage, were immersed into boiling water for 4 h 15 min to simulate and assess the impact of coolant water ingress into a tokamak on the state of Be components. Microscopy of the water-treated surfaces and the residue in the water re…
-
UKAEA-CCFE-PR(23)1882022
In 2019, the JET-ILW was equipped with a Shattered Pellet Injector (SPI) system with a wide capability to allow studies on the efficacy of shattered pellets in reducing the electro-magnetic and the thermal loads during disruptions and the avoidance/suppression of the formation of runaway electrons. The fully commissioned system became operationa…
Showing 1 - 10 of 20 UKAEA Paper Results